Post-Quantum Cryptography
Introduction
Post-quantum cryptography (PQC) refers to cryptographic algorithms that are believed to be secure against attacks by both classical and quantum computers. With the development of quantum computers progressing rapidly, the need for quantum-resistant cryptography has become increasingly important.
Why Post-Quantum Cryptography?
Quantum Computing Threat
Quantum computers pose specific threats to current cryptographic systems:
Shor's Algorithm
- Can efficiently factor large integers
- Breaks RSA encryption
- Solves discrete logarithm problems
- Compromises ECC and DSA
Grover's Algorithm
- Provides quadratic speedup for searching unsorted databases
- Reduces security of symmetric cryptography by half
- Requires doubling key sizes for symmetric algorithms
Major Approaches to PQC
1. Lattice-Based Cryptography
Lattice-based cryptography relies on the hardness of certain lattice problems.
NTRU (N-th degree TRUncated polynomial ring)
def ntru_key_generation(N, p, q):
# Generate polynomial rings
R = PolynomialRing(ZZ, 'x')
x = R.gen()
S = R.quotient(x^N - 1)
# Generate private key polynomials
f = generate_random_small_polynomial(N)
g = generate_random_small_polynomial(N)
# Compute public key
f_p = f.inverse_mod(p)
f_q = f.inverse_mod(q)
h = (p * f_q * g) % q
return {
'public_key': h,
'private_key': (f, f_p)
}
Learning With Errors (LWE)
def lwe_encrypt(public_key, message, params):
n, q = params['n'], params['q']
A, b = public_key
# Generate error vector
e = sample_error_distribution(n)
s = sample_uniform(n)
# Compute ciphertext
c1 = (A.dot(s) + e) % q
c2 = (b.dot(s) + e + message) % q
return (c1, c2)
2. Hash-Based Signatures
Hash-based signatures provide strong security guarantees based on the properties of cryptographic hash functions.
SPHINCS+ Implementation
class SPHINCS:
def __init__(self, height, levels, k):
self.height = height
self.levels = levels
self.k = k
def generate_keypair(self):
seed = generate_random_seed()
sk = expand_secret_key(seed)
pk = derive_public_key(sk)
return (sk, pk)
def sign(self, message, secret_key):
# Generate randomness
r = generate_randomness(message, secret_key)
# Build SPHINCS+ signature
signature = []
for level in range(self.levels):
# Generate WOTS+ signature
wots_sig = self.wots_sign(message, secret_key, level)
signature.append(wots_sig)
# Build authentication path
auth_path = self.build_auth_path(level)
signature.append(auth_path)
return signature
3. Multivariate Cryptography
Based on the difficulty of solving systems of multivariate polynomial equations.
Rainbow Signature Scheme
class Rainbow:
def __init__(self, v1, o1, o2):
self.v1 = v1 # Number of vinegar variables
self.o1 = o1 # Number of oil variables (layer 1)
self.o2 = o2 # Number of oil variables (layer 2)
def generate_keypair(self):
# Generate central map
F = self.generate_central_map()
# Generate affine transformations
S = self.generate_affine_transform()
T = self.generate_affine_transform()
# Compute public key
P = compose(T, F, S)
return {
'public_key': P,
'private_key': (S, F, T)
}
4. Code-Based Cryptography
Relies on the hardness of decoding problems in error-correcting codes.
McEliece Cryptosystem
class McEliece:
def __init__(self, n, k, t):
self.n = n # Code length
self.k = k # Dimension
self.t = t # Error correction capability
def generate_keypair(self):
# Generate Goppa polynomial
g = generate_irreducible_polynomial(self.t)
# Generate support
L = generate_support(self.n)
# Compute generator matrix
G = compute_generator_matrix(g, L)
# Generate scrambling matrix
S = generate_random_invertible_matrix(self.k)
# Generate permutation matrix
P = generate_permutation_matrix(self.n)
# Public key: G' = SGP
public_key = matrix_multiply(S, G, P)
return {
'public_key': public_key,
'private_key': (S, g, L, P)
}
NIST PQC Standardization
Selected Algorithms
Public-key Encryption/KEMs
- CRYSTALS-Kyber (Primary)
- BIKE (Alternate)
- HQC (Alternate)
- Classic McEliece (Alternate)
Digital Signatures
- CRYSTALS-Dilithium (Primary)
- FALCON (Primary)
- SPHINCS+ (Alternate)
CRYSTALS-Kyber Implementation Example
class Kyber:
def __init__(self, k):
self.k = k # Security parameter
self.n = 256
self.q = 3329
def keygen(self):
# Generate polynomial matrix A
A = self.generate_matrix()
# Generate secret vector s
s = self.sample_secret()
# Generate error vector e
e = self.sample_error()
# Compute public key
b = (A @ s + e) % self.q
return {
'public_key': (A, b),
'private_key': s
}
Implementation Considerations
1. Performance Optimization
def optimize_matrix_operations(matrix, vector):
# Use optimized libraries for matrix operations
return np.dot(matrix, vector)
def parallel_hash_computation(data, threads=4):
# Parallel processing for hash computations
with ThreadPoolExecutor(max_workers=threads) as executor:
results = list(executor.map(hash_function, data))
return results
2. Side-Channel Protection
def constant_time_compare(a, b):
if len(a) != len(b):
return False
result = 0
for x, y in zip(a, b):
result |= x ^ y
return result == 0
def masked_operations(sensitive_data):
# Apply masking to protect against power analysis
mask = generate_random_mask()
masked_data = sensitive_data ^ mask
# Perform operations on masked data
return unmask_result(result, mask)
Security Considerations
1. Hybrid Cryptography
class HybridEncryption:
def encrypt(self, message):
# Classical encryption
classical_key = RSA.generate(2048)
classical_ct = classical_key.encrypt(message)
# Post-quantum encryption
pq_key = Kyber.keygen()
pq_ct = pq_key.encrypt(message)
return {
'classical': classical_ct,
'post_quantum': pq_ct
}
2. Parameter Selection
def select_security_parameters(security_level):
params = {
'lightweight': {
'kyber': {'k': 2},
'dilithium': {'gamma1': 2^17}
},
'standard': {
'kyber': {'k': 3},
'dilithium': {'gamma1': 2^19}
},
'paranoid': {
'kyber': {'k': 4},
'dilithium': {'gamma1': 2^20}
}
}
return params[security_level]
Testing and Validation
def test_pqc_implementation():
# Test vector generation
test_vectors = generate_test_vectors()
# Test encryption/decryption
for vector in test_vectors:
# Generate keys
keys = keygen()
# Encrypt
ct = encrypt(vector.plaintext, keys.public)
# Decrypt
pt = decrypt(ct, keys.private)
assert pt == vector.plaintext
def benchmark_performance():
results = {}
# Measure key generation time
start = time.time()
keys = keygen()
results['keygen'] = time.time() - start
# Measure encryption time
start = time.time()
ct = encrypt(test_message, keys.public)
results['encrypt'] = time.time() - start
return results
Future Directions
Standardization Progress
- NIST Round 4 candidates
- Emerging alternatives
- Hybrid schemes adoption
Research Areas
- New mathematical foundations
- Performance improvements
- Side-channel resistance
- Quantum-safe protocols
References
- NIST Post-Quantum Cryptography Standardization
- D. J. Bernstein, J. Buchmann, E. Dahmen (Eds.) - Post-Quantum Cryptography
- Practical Cryptography in a Post-Quantum World
- NIST Special Publication 800-208 - Recommendation for Stateful Hash-Based Signature Schemes