Skip to content

Post-Quantum Cryptography

Introduction

Post-quantum cryptography (PQC) refers to cryptographic algorithms that are believed to be secure against attacks by both classical and quantum computers. With the development of quantum computers progressing rapidly, the need for quantum-resistant cryptography has become increasingly important.

Why Post-Quantum Cryptography?

Quantum Computing Threat

Quantum computers pose specific threats to current cryptographic systems:

  1. Shor's Algorithm

    • Can efficiently factor large integers
    • Breaks RSA encryption
    • Solves discrete logarithm problems
    • Compromises ECC and DSA
  2. Grover's Algorithm

    • Provides quadratic speedup for searching unsorted databases
    • Reduces security of symmetric cryptography by half
    • Requires doubling key sizes for symmetric algorithms

Major Approaches to PQC

1. Lattice-Based Cryptography

Lattice-based cryptography relies on the hardness of certain lattice problems.

NTRU (N-th degree TRUncated polynomial ring)

python
def ntru_key_generation(N, p, q):
    # Generate polynomial rings
    R = PolynomialRing(ZZ, 'x')
    x = R.gen()
    S = R.quotient(x^N - 1)
    
    # Generate private key polynomials
    f = generate_random_small_polynomial(N)
    g = generate_random_small_polynomial(N)
    
    # Compute public key
    f_p = f.inverse_mod(p)
    f_q = f.inverse_mod(q)
    h = (p * f_q * g) % q
    
    return {
        'public_key': h,
        'private_key': (f, f_p)
    }

Learning With Errors (LWE)

python
def lwe_encrypt(public_key, message, params):
    n, q = params['n'], params['q']
    A, b = public_key
    
    # Generate error vector
    e = sample_error_distribution(n)
    s = sample_uniform(n)
    
    # Compute ciphertext
    c1 = (A.dot(s) + e) % q
    c2 = (b.dot(s) + e + message) % q
    
    return (c1, c2)

2. Hash-Based Signatures

Hash-based signatures provide strong security guarantees based on the properties of cryptographic hash functions.

SPHINCS+ Implementation

python
class SPHINCS:
    def __init__(self, height, levels, k):
        self.height = height
        self.levels = levels
        self.k = k
        
    def generate_keypair(self):
        seed = generate_random_seed()
        sk = expand_secret_key(seed)
        pk = derive_public_key(sk)
        return (sk, pk)
    
    def sign(self, message, secret_key):
        # Generate randomness
        r = generate_randomness(message, secret_key)
        
        # Build SPHINCS+ signature
        signature = []
        for level in range(self.levels):
            # Generate WOTS+ signature
            wots_sig = self.wots_sign(message, secret_key, level)
            signature.append(wots_sig)
            
            # Build authentication path
            auth_path = self.build_auth_path(level)
            signature.append(auth_path)
            
        return signature

3. Multivariate Cryptography

Based on the difficulty of solving systems of multivariate polynomial equations.

Rainbow Signature Scheme

python
class Rainbow:
    def __init__(self, v1, o1, o2):
        self.v1 = v1  # Number of vinegar variables
        self.o1 = o1  # Number of oil variables (layer 1)
        self.o2 = o2  # Number of oil variables (layer 2)
        
    def generate_keypair(self):
        # Generate central map
        F = self.generate_central_map()
        
        # Generate affine transformations
        S = self.generate_affine_transform()
        T = self.generate_affine_transform()
        
        # Compute public key
        P = compose(T, F, S)
        
        return {
            'public_key': P,
            'private_key': (S, F, T)
        }

4. Code-Based Cryptography

Relies on the hardness of decoding problems in error-correcting codes.

McEliece Cryptosystem

python
class McEliece:
    def __init__(self, n, k, t):
        self.n = n  # Code length
        self.k = k  # Dimension
        self.t = t  # Error correction capability
        
    def generate_keypair(self):
        # Generate Goppa polynomial
        g = generate_irreducible_polynomial(self.t)
        
        # Generate support
        L = generate_support(self.n)
        
        # Compute generator matrix
        G = compute_generator_matrix(g, L)
        
        # Generate scrambling matrix
        S = generate_random_invertible_matrix(self.k)
        
        # Generate permutation matrix
        P = generate_permutation_matrix(self.n)
        
        # Public key: G' = SGP
        public_key = matrix_multiply(S, G, P)
        
        return {
            'public_key': public_key,
            'private_key': (S, g, L, P)
        }

NIST PQC Standardization

Selected Algorithms

  1. Public-key Encryption/KEMs

    • CRYSTALS-Kyber (Primary)
    • BIKE (Alternate)
    • HQC (Alternate)
    • Classic McEliece (Alternate)
  2. Digital Signatures

    • CRYSTALS-Dilithium (Primary)
    • FALCON (Primary)
    • SPHINCS+ (Alternate)

CRYSTALS-Kyber Implementation Example

python
class Kyber:
    def __init__(self, k):
        self.k = k  # Security parameter
        self.n = 256
        self.q = 3329
        
    def keygen(self):
        # Generate polynomial matrix A
        A = self.generate_matrix()
        
        # Generate secret vector s
        s = self.sample_secret()
        
        # Generate error vector e
        e = self.sample_error()
        
        # Compute public key
        b = (A @ s + e) % self.q
        
        return {
            'public_key': (A, b),
            'private_key': s
        }

Implementation Considerations

1. Performance Optimization

python
def optimize_matrix_operations(matrix, vector):
    # Use optimized libraries for matrix operations
    return np.dot(matrix, vector)

def parallel_hash_computation(data, threads=4):
    # Parallel processing for hash computations
    with ThreadPoolExecutor(max_workers=threads) as executor:
        results = list(executor.map(hash_function, data))
    return results

2. Side-Channel Protection

python
def constant_time_compare(a, b):
    if len(a) != len(b):
        return False
    result = 0
    for x, y in zip(a, b):
        result |= x ^ y
    return result == 0

def masked_operations(sensitive_data):
    # Apply masking to protect against power analysis
    mask = generate_random_mask()
    masked_data = sensitive_data ^ mask
    # Perform operations on masked data
    return unmask_result(result, mask)

Security Considerations

1. Hybrid Cryptography

python
class HybridEncryption:
    def encrypt(self, message):
        # Classical encryption
        classical_key = RSA.generate(2048)
        classical_ct = classical_key.encrypt(message)
        
        # Post-quantum encryption
        pq_key = Kyber.keygen()
        pq_ct = pq_key.encrypt(message)
        
        return {
            'classical': classical_ct,
            'post_quantum': pq_ct
        }

2. Parameter Selection

python
def select_security_parameters(security_level):
    params = {
        'lightweight': {
            'kyber': {'k': 2},
            'dilithium': {'gamma1': 2^17}
        },
        'standard': {
            'kyber': {'k': 3},
            'dilithium': {'gamma1': 2^19}
        },
        'paranoid': {
            'kyber': {'k': 4},
            'dilithium': {'gamma1': 2^20}
        }
    }
    return params[security_level]

Testing and Validation

python
def test_pqc_implementation():
    # Test vector generation
    test_vectors = generate_test_vectors()
    
    # Test encryption/decryption
    for vector in test_vectors:
        # Generate keys
        keys = keygen()
        
        # Encrypt
        ct = encrypt(vector.plaintext, keys.public)
        
        # Decrypt
        pt = decrypt(ct, keys.private)
        
        assert pt == vector.plaintext

def benchmark_performance():
    results = {}
    
    # Measure key generation time
    start = time.time()
    keys = keygen()
    results['keygen'] = time.time() - start
    
    # Measure encryption time
    start = time.time()
    ct = encrypt(test_message, keys.public)
    results['encrypt'] = time.time() - start
    
    return results

Future Directions

  1. Standardization Progress

    • NIST Round 4 candidates
    • Emerging alternatives
    • Hybrid schemes adoption
  2. Research Areas

    • New mathematical foundations
    • Performance improvements
    • Side-channel resistance
    • Quantum-safe protocols

References

  1. NIST Post-Quantum Cryptography Standardization
  2. D. J. Bernstein, J. Buchmann, E. Dahmen (Eds.) - Post-Quantum Cryptography
  3. Practical Cryptography in a Post-Quantum World
  4. NIST Special Publication 800-208 - Recommendation for Stateful Hash-Based Signature Schemes

Released under the MIT License.